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Abstract: Trajectory planning for automated driving has recently seen a shift from highly

discrete models towards continuous models related to the calculus of variations. These allow

intuitive, elegant and flexible formulations, however, a major challenge of these models lies in

finding their optima. Current iterative solvers are prone to terminating in local optima, being

sensitive to initial parameters, violating constraints and exceeding real-time restrictions. A

possible solution is presented in [1], where such variational models are transformed into Hidden

Markov Models (which provide global optimization) while retaining the original optimization

goals. This paper evaluates the necessity of such global optimization by comparing local and

global approaches on several realistic traffic scenarios.
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1 Background and Motivation

Trajectory planning for automated driving has been expressed through a wide variety of
models. In the darpa Grand Challenge [2], the models chosen by the successful par-
ticipants are characterized by a high degree of discretization, in several ways: Firstly,
most approaches chose to implement not a single trajectory planner, but multiple dedi-
cated subsystems tailored to specific situations and activated by a higher-level logic when
a specific situation is recognized. Secondly, most of the individual planners themselves
applied combinatorial methods that can be ascribed to a school of artificial intelligence
substantially influenced by [3], which lays a strong focus on graph-based models, such as
graph searches or Bayesian networks. This general paradigm can be found again, more
pronounced, in the subsequent darpa Urban Challenge, where many teams refined their
methods through the lessons learnt in the Grand Challenge.

In more recent years, it may denote a paradigm shift that several publications picked
up models from the continuous domain. [4] describes a model for evasive emergency
maneuvers based on continuous non-linear model predictive control (nmpc); [5, 6] propose
a model from the calculus of variations to represent trajectory planning for all traffic
situations in a unified and continuous way; [7] presents a similar approach also using the
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(a) A simple traffic scenario with two local optima:
The ego vehicle (green), an oncoming vehicle (red)
and a field of predicted occupancy risks (red: low;
white: high). Local optima (lower: passing before
the red car; upper: waiting) are indicated in green.
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(b) Abstract view of two local optima in two differ-
ent variants of the scenario. The red curve shows
the penalty values for the different trajectories, the
green arrows show the directions in which local op-
timizers will converge from an “initial guess”.

Figure 1: A simple traffic scenario with two local optima. The ego vehicle (green) must pass a traffic
island and cross the opposite lane. An oncoming car (red) will use the same lane. There exist two local
optima (passing before the other car, or behind it), between which no continuous transformation of vehicle
parameters exists, that also provides a safe solution. The optima are thus distinct, and considering the
exact geometry of the scenario, traffic laws, safety and comfort requirements, one will usually be more
desirable. Local iterative optimizers require an “initial guess”, and this guess can have more bearing on
the optimization result than the actual scenario. An intuitive representation is shown in (b), where the
horizontal axis represents an abstract trajectory space, and the vertical axis the penalties assigned to
each trajectory in a given scenario. ξL/ξR may represent passing before/after the oncoming car, which in
scenario 1 is very far away, and very close in scenario 2. While ξL is the best trajectory in scenario 1 by
far, and ξR in scenario 2, this circumstance is irrelevant to most iterative solvers. Instead, regardless of
the scenario, any initial guess left of ξC will converge to ξL, and any initial guess right of ξC will converge
to ξR

1. This property is largely independent of concrete model choices, as both maneuvers exist in the
real world, may represent safe trajectories and yet there is no way to continuously modify one maneuver
into the other without traversing a higher-penalty maneuver.

calculus of variations, which proved successful in the acclaimed Bertha-Benz drive of 2013.
The continuous models provide several advantages over the earlier combinatorial mod-

els. They allow a formulation that sticks close to physical intuitions of vehicle dynamics;
they do not require an abstract planning space that has to be equipped with a separate
physical interpretation (such as building a search tree from a finite set of preselected ma-
neuvers); they can easily be extended to consider a wide range of different goals within
the same framework; and they are, at the same time, efficient to compute, as previous
applications in other domains rendered them a well-understood topic.

One considerable challenge of these models stems from the fact that classical solution
methods are iterative, such as gradient descents or sqp. These methods are known for
problematic behavior that particularly concerns real-time applications: Convergence to
an optimal solution can not be guaranteed in general; solutions may be local optima
(see Fig. 1), stationary points or none of the before; convergence may not be attained in
time at all; hard constraints may be violated in the numerical process, so the resulting
trajectory is not even physically driveable. One possible solution is presented in [7],

1It must be noted here that this observation only applies to the interval and parameters shown in
Fig. 1b. In general, it is very well possible that, for example, initial guesses right of ξR will converge to
ξL, and vice versa, adding to the unpredictability of iterative solutions. Examples of this behavior will
be given in Sec. 3.
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where the environment model and optimization goals were explicitly set up to assure the
existence of a single local and global optimum. However, the model choices therein do not
immediately extend to general, dynamic traffic situations, as found, for example, in a left-
turn maneuver through oncoming traffic. [8] uses a combinatorial approach to enumerate
all possible maneuver variants and choose desirable candidates, but requires a finite set of
predicted trajectories for other traffic participants; the solution is thus inapplicable to the
models used in [6, 9], which use continuous probability densities to incorporate uncertain
predictions and sensor uncertainties.

A solution for the latter was suggested in [1], which provides global optimization of
general variational problems by transforming given variational models into equivalent
Hidden Markov Models (hmms), thereby establishing a bridge between combinatorial and
continuous models. As the transformation preserves optimization goals and thus optima,
it can be used in combination with iterative methods to efficiently improve the quality of
the solution. This paper compares state-of-the-art local optimization with the approach
presented in [1] on real-world traffic situations, to highlight risks associated with iterative
solvers even in simple and common environments.

2 Euler–Lagrange and Hidden Markov Models

The scope of this paper allows but a brief recapitulation of the use of variational Euler–
Lagrange Models in automated driving and of the transformation to Hidden Markov
Models, as is given in this section. The reader is asked to seek more thorough descriptions
of the underlying models and the transformation in [6, 7, 10] (for the elms) and in [1, 11]
(for the transformation to hmms).

2.1 Euler–Lagrange Models and the Calculus of Variations

Optimizing continuous trajectories in general is a problem from the calculus of variations.
The calculus of variations considers functionals P (here representing total penalty), which
map a function space Ξ to the real numbers, and aims to find the optimal function ξ∗ ∈ Ξ
for which P takes its lowest value, formally:

ξ∗ = arg minξ∈ΞP [ξ] (1)

In automated driving, Ξ is the space of possible trajectories for the ego vehicle. In general,
any computable P is conceivable, and any generalized coordinates and parametrization
can be chosen for the trajectories ξ, since (1)—for automated driving—merely represents
the general goal of finding the best continuous sequence of parameters that uniquely define
a behavior for the ego vehicle. Usually, and in all models discussed here, the parameter
of ξ is time t. Several recent works ([4, 5, 6, 7]) have considered a special form of P to
be sufficient for the tasks of automated driving,

P [ξ] =

∫ t2

t1

dt (ξ(t), ξ̇(t), ξ̈(t), ...,
dω

(dt)ω
ξ(t), t), (2)

which is based on the choice of a single function , the Lagrangian. The Lagrangian
assigns a local penalty value dependent on time t, and on the current values of ξ and
its first ω derivatives w.r.t. t, ξ̇(t), ..., dω/(dt)ωξ(t). can penalize collision risks or lane

departures through ξ, deviations from speed limits through ξ̇, and uncomfortable and
ecologically inefficient maneuvers through ξ̈ and ξ (for ω = 3).
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The key simplifications of (2), called here the Euler–Lagrange model (elm), are:

B Trajectories can only be rated based on
local properties, through . It is gener-
ally impossible, for example, to optimize the
relative position of several isolated points
along a trajectory.

B Trajectories can only be rated based on
their local, finite Taylor expansion. Prop-
erties not expressible in this form, as well
as discontinuities up to dω/(dt)ωξ, cannot be
considered.

The gain from the above limitations is that the optimization of elms is well-understood
due to their long-standing applications in the physics of particle trajectories. In particular,
they allow to analytically define the variational equivalent of the gradient ∇P , known as
the first variation, such that ∇P|ξ∗ ≡ 0 (which is known as the Euler–Lagrange equation,
hence the name). ∇P can be used in iterative gradient descent methods, and, along
with an analogous definition of a Hessian ∇2P , with variants of sequential quadratic
programming (sqp, [7, 12]). In this case, trajectories ξ are not considered analytically,
but instead as a sequence of some T + 1 discrete points, spaced with ∆t = (t2 − t1)/T .
However, as with common vector optimization, the iterative optimization of trajectories
is prone to several pitfalls, detailed in [11]. The most relevant are, in short:

B Iterative optimization can get stuck in lo-
cal optima that are not the global optimum
(as shown in Fig. 1), or even just stationary
points. In this case, the solution depends
critically on the “initial guess”.

B It can take arbitrarily long to converge
or even diverge. This is particularly prob-
lematic in real-time applications that have
a sharp limit on the computation time.

B The optimization result can depend sen-
sitively and counterintuitively on the choice
of the “initial guess”, as well as on optimiza-
tion parameters such as step size or step di-
rection.

B Enforcement of hard constraints is gener-
ally possible, but cannot be guaranteed for
arbitrary constraints.

Whether or not these issues arise in a given application depends very much on the
problem layout. For the particular application of automated driving, this paper will show
in Sec. 3, that even for simple and common traffic situations, and under rather general
assumptions concerning the problem layout, local optima may be plentiful and can present
a hazardous challenge for iterative optimizers.

2.2 From Euler–Lagrange Models to Hidden Markov Models

To address the issues of local, iterative optimization, [1] presents a method to transform
elms to Hidden Markov Models (hmms), which allows to apply methods from hmms, in
particular global optimization, to elms. [1] demonstrates that hmms and elms are dual
in the sense that both models make the same set of simplifying assumptions, and thus
hmms can be considered the discrete version of elms. This section will outline the key
aspects of the transformation, and describe briefly, why the formulation as an hmm is
considered advantageous.

Hmms are probabilistic graphical models, and an extension of Markov chains. They
describe a probabilistic state machine that starts in a random state x ∈ X based on
a starting probability p(x 7→), and transitions—over discrete time steps τ—at random
between states x ∈ X, based on transition probabilities p(xj←xi|xi). While in each
state, the automaton randomly emits a single symbol ς from a given set Σ, based on an
emission probability p(ς|xi) which differs between the states. Now, the most common
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application of this model is to consider a sequence σ = [σ1, ..., σT ]> (σt ∈ Σ) of emitted
symbols known, and the sequence of underlying states ξ = [ξ1, ..., ξT ]> (ξt ∈ X) unknown.
While in general no symbol σt uniquely defines ξt, the differing emission probabilities
make certain states at a given time t more likely than others, given σt; the transition
probabilities in turn decide whether a sequence is possible and likely in itself.

The most likely sequence of states ξ∗ given a sequence of observed symbols σ is then
the ξ to maximize the following expression:

p(ξ|σ) ∝ p(ξ, σ) =
(∏T

τ=1 p(στ |ξτ ) · p
(
ξτ← ξτ−1

∣∣ξτ−1

))
· p(σ0|ξ0) · p

(
ξ0 7→

)
, (3)

The key simplification of the hmm is to assume the transition and emission probabilities
to be dependent only on the current state (the Markov property), and thus to compose
the total probability as an accumulation of local probabilities. [1] shows that the set of
given probability distributions, in particular p(xj←xi|xi) and p(ς|xi), corresponds to the
Lagrangian in an elm. A particularly intuitive case of a transformation can be given
for a Lagrangian of the form

(x, ẋ, t) = 1(x, t) + 2(x, ẋ), (4)

which allows for the following transformation to the relevant probabilities of the hmm,

p(xj←xi|xi)=
1

Z2

exp

(
− 2

(
xj,

xj−xi
∆t

))
and p(στ |xi)=

1

Z1

exp (− 1 (xi, τ∆t+ t1)) , (5)

which in turn directly yield the following correspondence between optima in the resulting
hmm, and optima in the original elm:

arg max
ξ∈Ξ

p(ξ|σ) = arg min
ξ∈Ξ

P [ξ] = ξ∗ and p(ξ∗|σ) =
1

Z
exp(−P [ξ∗]) (6)

In the above transformation, which is based on the Boltzmann distribution from statistical
mechanics, the constants Z,Z1, Z2 serve to establish proper probabilities and are uniquely
determined by the problem; they also can be ignored in practical applications, as they do
not affect the location of the minima in (6). The transformation connects the sequence of
points in an elm to the sequence of states in an hmm; the limited, local Taylor expansion
used in the Lagrangian to the limited, local Markov memory; the time-dependence of

to the time-dependence introduced by the hmm emissions; and the integral (or sum) of
local Lagrangians to the multiplication of local probabilities. [1] shows that elms with
arbitrary Lagrangians can be transformed into hmms, however the models discussed here
already lend to the simplification as in (4), if generalized states (consisting of locations,
velocities and further derivatives) are used, as is common in variational optimization. The
conversion of a given elm to an hmm has the following main consequences:

B The original elm can be optimized
through the Viterbi algorithm, which finds
the global optimal sequence of states (i.e.
the trajectory ξ) in a fixed number of steps.
As the search is exhaustive, the computa-
tion time of an hmm (O(T ·|X|2) is generally
slower than for the equivalent elm (which
is equally linear in T but does not depend
on |X|) for large state spaces; however the
computation time of iterative solvers de-

pends on the concrete values in the prob-
lem and can grow arbitrarily large even for
a fixed problem size (O(∞)). Furthermore,
the fixed number of computation steps al-
lows for an efficient hardware implementa-
tion of an hmm, while iterative elm solvers
require dynamic computation times.

B The free parameters to the Viterbi algo-
rithm are the choice of a discretization of
X (and of T , as in the elm). Compared to
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the free parameters in iterative optimization
(“initial guess”, step size and direction, ter-
mination criteria, see Sec. 2.1), these param-
eters are considered considerably more intu-
itive and less delicate in their effect on the
result. However, as the computation time
scales with |X|2, the state space must still
be chosen carefully.

B The respective algorithms can be paral-
lelized along a different problem dimension.

An elm can compute the next iteration step
largely in parallel over all T + 1 time steps,
but has to execute the iterations in sequence
and does not scale with |X|. An hmm on
the other hand must compute the T time
steps in sequence, but can compute the en-
tire state space X in parallel for each time
step. The parallel capabilities available, and
the size of the problem, thus can also affect
the choice between elm and hmm.

[1] shows hmms to be real-time capable for automated driving tasks at a low resolution,
and names three key applications of the transformation:

B Hmms can be used to directly optimize
vehicle trajectories.

B Hmms can be used to provide initial
guesses to an iterative optimizer at a low
resolution, hopefully close to a global opti-
mum. The iterative optimizer can then con-
tinue “smoothing” the trajectory at a finer
resolution, based on the same optimization
criteria.

B Hmms can be used to analyze given plan-
ning problems offline during research and
development, when computation must not
occur in real time. This is relevant since
with iterative solvers, one can rarely be sure
to have found the global optimum already,
even with several initial guesses (see Fig. 5);
the high-resolution hmm result can then be
used to benchmark less expensive methods.

3 Practical Evaluation

For any of the aforementioned applications, two main considerations determine whether
the transformation from a particular problem in elm form to an equivalent hmm is worth-
while: Does the problem have very few and/or priorly known and/or very similar optima?
Can the iterative optimization be guaranteed to terminate in time? If both answers are
“yes”, then there is little to be gained from a conversion to an hmm. [7] presents an
approach that deliberately reduces the complexity of the situation to assure the existence
of a single local and global optimum. However, we believe that arbitrary traffic situations
cannot generally be reduced to this extent. This section will give several according exam-
ples. The focus is on an analysis of the local optima in traffic situations; some comments
on execution times can be found in [1], but a serious comparison would require algorithms
that are optimized to fully exploit their respective advantages; this debate is beyond the
scope of this paper.

The Optimization Goals The basis for the evaluation is the elm used in the Situation
Prediction and Reaction Control (sparc) approach (cf. [6]). We consider trajectories of
world coordinates parametrized over time, and a Lagrangian of the form

(ξ, ξ̇, ξ̈, t) = in(ξ, ξ̇, ξ̈) + ′
out(ξ, ξ̇, t) + ′′

out(ξ, ξ̇, t), (7)

where in denotes the inner penalties related to the geometry of the trajectory (sharp ac-
celerations, high speeds in sharp curves), ′

out denotes the primary outer penalties related
to expected risks of collisions at location ξ and time t, and ′′

out denotes the secondary
outer penalties related to non-vital interactions with the environment, such as traffic rule
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(a) Sketch of the situation with predicted risks. (b) Aerial view of the situation.
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(c) Ground view of the situation. The front car A is indicating a right turn, the rear car B is not.

t

s

B

(d) Results for narrow spacing between A and B.

t

s

B

(e) Results for wide spacing between A and B.

Figure 2: Scenario i: A left turn through oncoming traffic from Bannwaldallee into Grießbachstraße,
Karlsruhe. Two variants are compared: Narrow spacing between the vehicles in (d) and wide spacing in
(e). For both variants, the iterative solutions (green lines) include local minimum passing in between the
cars, even though the risk in the narrow spacing is high (white map entries). There also exist local minima
that pass the intersection before both cars, which are safe but highly uncomfortable due to relatively high
speeds in a sharp curve. The best solution in (d) however is to wait for both cars, while in (e) the gap is
wide enough to cross, as suggested by the hmm (white) and subsequently refined iteratively (black).

violations (such as exceeding speed limits or overtaking a car on the wrong side) or pot-
holes. in is computed in a space–time volume of expected risks, based on predicted
occupancy probabilities for other traffic participants and objects. All penalty terms are
smooth and and analytically differentiable, except for the predicted collision risks, which
can be discontinuous. The only hard constraints are put on the physical limits of the
ego vehicle, such as maximal and minimal accelerations and velocities. The prediction
principles are based on the descriptions in [9]; however, as is argued here and indicated in
Fig. 1, the existence of multiple optima is not an artifact of specific prediction methods,
but rather the fundamental nature of and sufficiently complex traffic situations.

The Optimization Methods Each scenario compares the result of the hmm, based
on the principles laid out in [1], to the results obtained from the matlab constrained
optimization function fmincon, which is an iterative local optimizer based on sequential
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(a) Sketch of the situation with predicted risks. (b) Aerial view of the situation.

e

(c) Ground view of the situation. The ego vehicle wants to leave at the first exit, following D.

1 2 3 4t

s

(d) Results with numbered endpoint clusters.

1 2 3 4i

s

(e) Endpoint jumps over initial guess index.

Figure 3: Scenario ii: A roundabout between Raffineriestraße, DEA-Sholven-Straße and Esso-Straße
outside of Karlsruhe. In Tab. 1, this scenario stands out as having the highest Jend, indicating that the
obtained local minima jump randomly with the initial guesses. In between initial guesses converging to
endpoint 2, there are many guesses converging to 1 and 3. It is thus hard to predict the ξielm from a
given ξ

(i)
elm, as very small changes can have significant impacts. Table 1 also shows that the discretization

of the hmm in this scenario has the most notable effect: The elm using the hmm result as an initial guess
is able to improve the hmm result by about 30 %.

quadratic programming (sqp), using line search and active set or interior point methods
for constraint enforcement (cf. [12] for details). The maximum number of iterations was
set to 800, and the iterative optimization was started from a series of approximately 100
“initial guesses” (each accelerating the car to a different speed and keeping the speed con-
stant from then on), which converged to several local optima. The iterative results should
be considered in view of the fact that fmincon is an advanced optimizer; less sophisti-
cated methods can get stuck in considerably more optima, and have trouble enforcing the
imposed hard constraints.

The Scenarios The scenarios presented here are based on aerial images gathered in the
vicinity of Karlsruhe. For easier reference, each scenario is provided with a ground view
of the situation, with a sketch showing the involved participants (not to scale) and with
the space–time map of the predicted occupancy probabilities.
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(a) Sketch of the situation with predicted risks.

e

(b) Ground view of the situation.
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F
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(c) Results with car indices. Merging between A and D has an increased risk, as B might merge here.
The optimal solution is to merge behind F. Several local optima suggest to not leave the ramp at all.

Figure 4: Scenario iii: Entering the L605 highway from Oberreut, outside of Karlsruhe. Table 1 shows
that this scenario has local optima of very different quality, yet, due to the very structured environment
with all surrounding cars driving at a very similar speed, the local optima are continuously traversed and
found by the initial guesses, with hardly any jumps on the endpoints. Coincidentally, the discretization of
the hmm in this scenario matches the requirements of the situation so well that even the iterative solver
can hardly improve its solution. This, however, does not hint at a general rule.

The scenarios provided in this section assume a fixed path, and thus only optimize the
timing along the path. This simplification was chosen to allow for a more obvious visual
representation, but presents no principal limitation to the approach (a general discussion
of longitudinal and lateral planning can be found in [11]). Only those scenarios are shown
where the lateral planning options are limited by the nature of the scenario; however,
even these cases are challenging for iterative optimization. In multidimensional planning,
the number and diversity of local optima increases further.

The Metrics To evaluate the scenarios in terms of the topology of local optima and
of the effort for the respective solvers, we establish the following variables and metrics
that will be given in the corresponding figures. To facilitate the understanding, we have
normalized the time index to t ∈ [0, 1] and the space scale to ξ ∈ [0, 1] respectively, and
the penalties such that the penalty of ξhmm, the trajectory obtained directly by the hmm,
is Phmm = 1. Thus, an iterative elm solution yielding Pelm = 1.5 will be 50 % worse in
terms of optimality than the hmm solution.

B ξ
(i)
elm and ξielm: The i-th “initial guess”,

and the trajectory to which the iterative
solver converges from that guess.

B ξ
(∗)
elm and ξ∗elm: The best initial guess and

the trajectory it converges to, which has the
lowest P obtained from any elm guess.
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(a) Ground view (cont’d on the next page). The bus is expected to turn right with high probability.
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(b) Sketch of the situation with predicted risks.
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(c) Results with marked lane locations and cars.

Figure 5: Scenario iv: The intersection of Adenauerring and Am Fasanengarten in Karlsruhe. Strikingly
in Tab. 1, this scenario poses the greatest challenge to the iterative optimizer. 90 % of the iterative
trajectories are worse than the hmm result by 100 %, some even by more than 400 %. This is mostly
due to the high complexity of the maneuver, crossing three lanes and including locations where collisions
with more than one vehicle are expected (in between lanes). The scenario however also differs from the
previous ones in that it is the only where trajectories with similar endpoints have significantly different
penalty values. Hence, even though the moderate Jend indicates (correctly) that the trajectories mostly
vary smoothly with the initial guesses, JP is highest in this scenario by far. The reason for this is that
here, more than in any other scenario, very undesirable local minima and relatively safe local minima are
densely packed. There is, for example, a local minimum that chooses to likely collide with G, because it
only sees the alternatives of colliding with G and F or B. None of the initial guesses exactly finds the
global optimum found by the hmm.

B ξhmm→elm: The trajectory found by the it-
erative solver when using ξhmm as the initial
guess.

B I∗elm: The number of iterations required

to converge from ξ
(∗)
elm to ξ∗elm.

B Imin
elm , Imax

elm , 〈Ielm〉, med(Ielm): The mini-
mum, maximum, mean and median number

of iterations from ξ
(i)
elm to ξielm, over all i.

B Ihmm→elm: The number of iterations re-
quired to converge from ξhmm to ξhmm→elm.

B P ielm = P [ξielm]: The penalty value to
which the iterative solver converged from
the i-th initial guess.

B Phmm→elm: The penalty value obtained by

using the solution found by the hmm as an
initial guess to the iterative solver.

B miniP ielm, maxiP ielm, 〈Pelm〉, med(Pelm),
σ(Pelm): The minimum, maximum, mean,
median and standard deviation of P ielm over
all i. This hints at the probability distribu-
tion for obtaining a certain penalty value by
trying out initial guesses at random.

B pn%: The probability of the iterative
solver achieving an n% worse penalty result
than the direct hmm result.

B JP =
∑

i |P ielm − P
(i−1)
elm |: The absolute

amount of jumps of penalty values obtained
from consecutive initial guesses. As the
initial guesses are continuous in trajectory
space, a large number of jumps between con-
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e

Figure 5a (cont’d from previous page).

secutive results indicates a very diverse ar-
rangement of optima.

B Jend =
∑

i |ξ(1)i−ξ(1)(i−1)|/(maxj ξ(1)j−
min ξ(1)j): The absolute amount of jumps
in the obtained endpoints from consecutive
initial guesses, divided by the largest dis-
tance of endpoints. As most local optima
vary in their endpoints in the examples pro-
vided here, jumps in these endpoints indi-
cate that the solver jumped to another local
optimum altogether. As the initial guesses
are continuous in trajectory space, it would

be expected that the total number of jumps
equals the distance from the “leftmost” to
the “rightmost” locally optimal endpoint, as
the iterative optimizer slips from one local
optimum to the next. Instead, however, the
optimizer may not converge to an optimum
close to the initial guess, but instead to more
remote optima. If this metric is 1, the iter-
ative solutions vary orderly with the initial
guesses. The higher this metric, the less ξielm
can be predicted from ξ

(i)
elm. An example of

this case is found in Fig. 3 / scenario ii.

3.1 Discussion

The evaluation of scenarios is given in detail in Figs. 2–5. In each case, the approximately
100 solutions found by the iterative optimizer are shown in green, the solution found by
the hmm is shown in white, and the iteratively refined hmm solution is shown in black.
A full presentation of the quantitative results is given in Tab. 1. The analysis confirms
the basic assumption that the iterative optimizer has difficulty finding the global solution
through initial guesses. The hmm approach reliably finds solutions in all four scenarios
that are, given the discretization, as close as possible to the global optimum, and—with
the exception of scenario ii—always within 10 % of its value. If the solution of the hmm
is further refined by the iterative solver, the result is in all cases the best solution that is
found by any method applied here.

Even though the scenarios were intentionally chosen to be mostly common situations
of low complexity, they reveal some of the main problems associated with iterative op-
timization: Plentiful optima of very different quality (scenarios i and iv), unpredictable
convergence from the initial guess (scenario ii) and lack of convergence even after many
iterations (scenarios ii and iv). An effect that was notably absent was the violation of
hard constraints, which were enforced successfully in all cases by fmincon. On the other
hand, it can be stated that scenario ii posed a notable challenge to both optimization
methods and certainly merits further attention. Detailed descriptions of the particular
effects can be found in the respective figures.
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4 Conclusion and Outlook

This paper has provided a deeper insight into the situation of local space–time trajectory
optima in several real-world traffic situations. Maneuvers to which local iterative opti-
mization methods, such as sqp, may converge, were compared to global optima which are
obtained by transforming the variational formulations into an equivalent hmm. The results
show that even for very simple and common traffic situations, the scattered distribution
of local optima can play a significant role in trajectory optimization. Free parameters
in iterative solvers have a significant impact on the solution—at times even more than
the actual problem structure. The evaluation indicates that the hmm approach is able to
find optima deterministically and in fixed time that are very close to the best solutions
found by iterative solvers in unlimited time. It also suggests that global optimization of
very general environment models of automated driving is feasible in real time. The most
promising implementation of the hmm-based approach is a hardware implementation,
such as on an fpga (cf. [1]); it thus must be demonstrated that such an implementation
is able to produce solutions in real time.

Several solutions were recently proposed to address the issue of local optima, in par-
ticular [8] and [1]. While the transformation to an hmm, as in [1], can provide global
optimization for arbitrary elms, highly structured models as in [8] are certainly more
efficiently solved by other means. The models proposed in [1, 11] and discussed here
are based on the assumption that environment models may (need to) evolve and become
more complex and more stochastic, in which case it is considered inefficient at a certain
point to develop specialized solvers for every new environment model, and instead apply
a solver that can handle arbitrary problems of a more general form. Whether abstract
and structured environment models, or fuzzy, stochastic models as used here are better
suited for automated driving remains an open question.
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Assistenz mittels nichtlinearer modellprädiktiver Trajektorienplanung für den aktiven
Fußgängerschutz. In K. Dietmayer et al., editors, 8. Workshop Fahrerassistenzsys-
teme – FAS2012, pages 77–86, September 2012.

[5] J.R. Ziehn. Energy-based collision avoidance for autonomous vehicles. Master’s
thesis, Leibniz Universität Hannover, Germany, October 2012.

[6] M. Ruf, J.R. Ziehn, B. Rosenhahn, J. Beyerer, D. Willersinn, and H. Gotzig. Sit-
uation Prediction And Reaction Control (SPARC). In B. Färber et al., editors, 9.
Workshop Fahrerassistenzsysteme – FAS2014, pages 55–66, March 2014.

82 10. Workshop Fahrerassistenzsysteme



Scenario ia Scenario ib Scenario ii Scenario iii Scenario iv

Penalty distribution (colored in relation to the column minima and maxima)

Phmm 1 1 1 1 1

Phmm→elm 0.92 0.94 0.77 1.00 0.98

mini P ielm 0.92 0.94 0.77 1.00 1.26

maxi P ielm 3.91 3.81 1.29 2.52 5.13

〈Pelm〉 1.13 1.15 1.18 1.77 3.34

med(Pelm) 1.01 1.04 1.23 2.52 2.73

σ(Pelm) 0.54 0.48 0.18 0.76 1.09

Solutions inferior to hmm (colored in relation to row minima and maxima)

p0% 0.81 0.85 0.84 0.51 1.00

p10% 0.08 0.11 0.84 0.51 1.00

p30% 0.08 0.11 0.00 0.51 0.90

p50% 0.07 0.09 0.00 0.51 0.90

p100% 0.05 0.04 0.00 0.51 0.90

Iteration counts (colored in relation to row minima and maxima)

Ihmm→elm 66.00 91.00 105.00 15.00 185.00

Imin
elm 33.00 33.00 52.00 25.00 79.00

〈Ielm〉 58.01 55.16 130.04 63.66 252.58

med(Ielm) 49.00 49.00 110.00 62.00 206.00

Imax
elm 137.00 104.00 > 800.00 169.00 > 800.00

I∗elm 67.00 96.00 100.00 71.00 215.00

Predictability metrics (colored in relation to row minima and maxima)

JP 9.54 10.06 6.71 5.05 27.67

Jend 2.57 2.46 7.17 1.44 2.15

Table 1: Metrics for the evaluation presented in Sec. 3; the metrics are defined there.

[7] J. Ziegler, P. Bender, T. Dang, and C. Stiller. Trajectory planning for Bertha –
A local, continuous method. In Proceedings of the 2014 IEEE Intelligent Vehicles
Symposium (IV), Dearborn, pages 450–457, June 2014.
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